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LETTER TO THE EDITOR 

Finite-size scaling theory for non-linear relaxation 

J M Sanchot, M San Miguelt and J D Gunton 
Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 15 September 1980 

Abstract. We present a finite-size scaling theory for the non-linear relaxation of a simple 
relaxational model. 

An interesting aspect of critical phenomena is the effect of finite size on the bulk 
thermodynamic and dynamical properties of a system. These effects are of intrinsic 
interest since experiments are always performed on finite systems and have observable 
consequences for relatively thin fields (Lutz et a1 1978). One striking feature involves 
the ‘rounding off’ of an infinity in the susceptibility or specific heat at the critical point of 
the bulk system to a finite value which depends on the size of the system. A successful 
phenomenological finite-size scaling theory has been developed for thermodynamics by 
Fisher (1971) and has recently been derived by Suzuki (1977) by renormalisation group 
arguments. Suzuki (1977) also extended this finite-size scaling to dynamics for the 
linear relaxation time of kinetic Ising models. It should be noted that these finite-size 
scaling theories are not only relevant for predicting the critical behaviour of finite 
systems, but have also been used to obtain estimates for the bulk critical exponents. For 
example, Nightingale and Blote (1980) recently obtained quite good estimates for the 
critical exponents for the d = 2 q-state Potts model, while Yalabik and Gunton (1979) 
obtained a reasonable estimate of the dynamical exponent z for the d = 2 kinetic Ising 
model. Thus a study of finite-size effects is proving quite useful for a variety of reasons. 

In this note we extend Suzuki’s theory to obtain a finite-size scaling theory for the 
non-linear relaxation (Suzuki 1971, Binder 1973) rate for kinetic Ising models. 
Although studies of non-linear effects are much more difficult than the corresponding 
linear problems, some progress has already been made for bulk systems, including both 
a phenomenological scaling theory (Racz 1976, Fisher and Racz 1976) and recent 
renormalisation group calculations (Bausch and Janssen 1976, Kawasaki 1976, Suzuki 
1976, Bausch et al 1979, Yamada et a1 1979). We would hope that a finite-size scaling 
theory for the non-linear relaxation could provide some additional insight into these 
phenomena. One aspect of particular interest in what follows will be the asymptotic 
behaviour of the non-linear relaxation time in a finite system. 

We begin by recalling that for infinite systems the renormalisation group cal- 
culations lead to a scaled equation of motion for the order parameter m, from which the 
scaling form for the relaxation time T can be derived. This scaling takes the form 

T = E - ’ * @ ~ ( X )  (1) 
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with 
x = m ( 0 ) / 8  

where we use the standard notation for critical exponents and where E is the reduced 
temperature and m(0) is the initial value of the order parameter. The renormalisation 
group result (1) is in agreement with earlier predictions based on scaling arguments 
(Racz 1976, Fisher and Racz 1976, Kretschmer et a1 1976). It should be stressed, 
however, that the actual linear and non-linear exponents do not follow just from scaling 
arguments. Their values depend on the asymptotic properties of the function am which 
itself requires the solution of the renormalised dynamical problem. It has generally 
been assumed (Racz 1976, Fisher and Racz 1976, Bausch and Janssen 1976, 
Kawasaki 1976, Suzuki 1976) that in the linear regime (x << 1) 

@m(x) - c (3) 
where c is a constant, and in the non-linear regime (x >> 1) 

-1 (Pm(x)-x . 
These assumptions imply respectively that 

7 L E - y = ;  AI = uz 
T n l  - E P - u z ,  

9 A , ~ = Y z - - ~  

(4) 

with a crossover between these two limiting behaviours occurring for x - 1. 
Until recently (Bausch eta1 1979) a valid justification of expression (4) had not been 

given. Indeed, the arguments presented by Fisher and Racz (1976) are from an a priori 
point of view rather doubtful, since their starting point is a renormalised instantaneous 
equation of motion of the Ginzburg-Landau type in which non-Markovian terms are 
neglected. Renormalisation group calculations show, however, that non-Markovian 
terms should also be included (Bausch and Janssen 1976, Yamada et a1 1979). 
Nevertheless the E expansion (Bausch et a1 1979) seems to give results consistent with 
equation (6). 

Turning now to finite systems, a scaling theory for the linear relaxation has been 
derived by Suzuki (1977)t. His predictions are in reasonable agreement with recent 
calculations (Nightingale and Blote 1980, Yalabik et a1 1979). For a d-dimensional 
lattice of volume Ld, the linear relaxation time is predicted to have a maximum value 

(7) 
I 

T -L‘ 

instead of its bulk divergence T ’  - [‘, where 5 is the correlation length. This linear 
relaxation time crosses over to the bulk behaviour ( 5 )  for 

y EL1fV - 1. (8) 
‘The natural question then arises as to how the finite size will smooth out the divergence 
of the non-linear relaxation time and correspondingly, what will be its asymptotic 
behaviour. A simple argument provides a sensible answer to this question. We have in 
principle two characteristic times 

(9) t l -€  - Y Z  

t It should be noted that Suzuki’s derivation does not give the general scaling form of Fisher, since it yields for 
the exponent A which characterises the shift in the critical point A = l / v ,  whereas in general this is not always 
the case. 
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for which a crossover from non-linear to linear behaviour occurs in the bulk limit, and 

tz - L‘ (10) 
for which the crossover from the bulk region to the finite-size region occurs. In the 
finite-size limit y << 1, we have tl >> f Z  and only tz is left as a characteristic time in which 
the change from linear to non-linear behaviour can occur. If we assume a smooth 
matching at t = tZ of a power law behaviour of the time-dependent order parameter 

m ( t )  - m(0)t-P’vZ (11) 
in the non-linear region (t  < f z ) ,  with an exponential decay in the linear region ( t  > tz) ,  
we obtain equally important contributions to the non-linear relaxation time rnl from 
both regions. For example, an estimate of the Contribution to rnI 

in the linear region is 

We might also note that to obtain the scaling relation (6) for infinite systems it has been 
argued that the main contribution to 7’’’ comes from the long-time relaxation in the 
linear region. In that case, however, there is a difficulty in that the crossover time tl goes 
to infinity when T +  T, (Fisher and Racz 1976). Since it is this crossover time going to 
infinity which gives rise to the difference between the linear and non-linear exponents, 
this heuristic argument is somewhat dubious for the bulk system. For finite systems 
however, even for the extreme limit for the non-linear relaxation in which E = 0, tz 
remains finite, so the argument seems reasonable. 

We now turn to a formal analysis of the general scaling form for r and discuss 
different limiting behaviour of the scaling function which unifies the results (5)-(7) and 
(12) and allows us to discuss the different crossover phenomena. This generalises 
Suzuki’s (1977) finite-size dynamical scaling theory for the linear relaxation time. From 
his results we have the scaling form 

m ( t )  = E’f(hE”’, eL1”, t E v ‘ )  (14) 
where h is the initial magnetic field. We use the equilibrium equation of state for the 
infinite system 

to eliminate h in terms of the initial condition m(0) in (14). This yields 

m ( t )  = E ’ F ~ ( X ,  y, te”‘) (16) 
where x and y are defined by equations (2) and (8). Therefore we obtain 

where 
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Equation (17) is the scaled form of T which can alternatively be written as 

T = L"@.Z(x, y )  

@2(x ,  Y )  = Y - Y r @ l ( X ,  Y ) .  

@ I b ,  Y )  @&) 

where 

In the bulk limit 

so that we recover equation (1) and as a consequence equations ( 5 )  and ( 6 ) .  
In the finite-size limit we assume for the linear regime 

Q2(x ,  y )  constant 
x<< 1 

so that equation (7) is derived. In the non-linear regime 
- 1  -p  @2(x, y ) - x  Y 

x >>1 

from which equation (13) is recovered. Alternatively we have 

and 

@ A x ,  y )  - x - l y v r - @ .  
y < < l  
x >> 1 

For y - 1, equations (7) and (13) cross over to equations ( 5 )  and (6) .  
Finally we note that the result (13) might be used to calculate the non-linear 

exponent Anr by a Monte Carlo simulation of a finite-size system, similar to the 
calculation of AI by Yalabik and Gunton (1979). 
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